

ENVELOPPE ET REVETEMENTS

Baies et Vitrages

RAPPORT D'ETUDE THERMIQUE N° BV10-1012 CONCERNANT DES MENUISERIES ALUMINIUM COULISSANT 73000 GINKGO double et triple vitrage, intercalaire aluminium et SGG Swisspacer V

Ce rapport atteste uniquement des caractéristiques de l'objet étudié et ne préjuge pas des caractéristiques de produits similaires. Il ne constitue donc pas une certification de produits au sens de l'article L 115-27 du code de la consommation et de la loi du 3 juin 1994.

En cas d'émission du présent rapport par voie électronique et/ou sur support physique électronique, seul le rapport sous forme de support papier signé par le CSTB fait foi en cas de litige. Ce rapport sous forme de support papier est conservé au CSTB pendant une durée minimale de 10 ans.

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale.

Il comporte 18 pages.

A LA DEMANDE DE : SMS ALU SYSTEME

Zone Industrielle Route d'Ensisheim
68190 UNGERSHEIM

CENTRE SCIENTIFIQUE ET TECHNIQUE DU BATIMENT

OBJET

L'objet est de calculer les coefficients de transmission thermique U_f de menuiserie et U_w de fenêtre et porte-fenêtre d'une part, les facteurs solaires S_w d'autre part.

Les profilés et les fichiers de calculs correspondants nous ont été transmis par la société SMS et sont reproduits en annexe à la fin de ce rapport.

Ce rapport ne traite que de la performance thermique des produits et ne préjuge en rien de leur aptitude à l'emploi.

TEXTES DE REFERENCE

Le calcul du coefficient surfacique des fenêtres est effectué conformément aux règles d'application Th-Bât Th-U, (2006), fascicule « Parois Vitrées ».

IDENTIFICATION DU CORPS D'EPREUVE

Dénomination commerciale	73000 GINKGO
Numéro d'enregistrement	10MC061
Date de l'étude	5 Octobre 2010

Fait à Marne-la-Vallée, le jeudi 7 octobre 2010

La responsable de l'étude

Maya CARDOSO

I- DESCRIPTION SUCCINCTE

Une description de l'ensemble des profilés est représentée en annexe pour les cas suivants :

Gamme		Référence des plans
73000 GINKGO SMS	Profilés	Plan 1

Tableau 1 : description des fenêtres et portes-fenêtres

II- METHODOLOGIE

II-1 Principe

Le calcul est réalisé par modélisation numérique en bidimensionnel et consiste à évaluer les flux de chaleur transmise à travers les fenêtres et les portes-fenêtres de l'ambiance intérieure vers l'extérieure et déterminer ensuite les coefficients de transmission thermique U.

II.2 Règles de calcul

Les coefficients Ug sont donnés dans des tableaux dans les règles Th-U et pour des vitrages doubles verticaux.

Les valeurs des émissivités du vitrage et le taux de remplissage de l'argon sont à justifier conformément à la méthode de calcul donnée dans les règles Th-U.

II.3 Hypothèses

II.3.1 Géométrie

Dimensions (voir annexes):

Les dimensions conventionnelles retenues correspondent à des dimensions hors tout et sont données pour chaque cas dans le tableau suivant :

Menuiseries	Dimensions (LxH) en m
Fenêtre 2 vantaux	1,53 x 1,48
Porte-fenêtre 2 vantaux	2,35 x 2,18

Tableau 2 : dimensions conventionnelles pour fenêtres et porte-fenêtre

II.3.2 Matériaux

<u>Matériau</u>		Conductivité thermique W/(m.K)
- Joints en EPDM	:	0,25
- Verre	:	1
- Isolant	:	0,035
- ABS rigide (Alfasolar)	:	0,125*
Profilés 73201+73210+73311		•
- PA6.6 25% fibre de verre	:	0,30
- Aluminium	:	160
- PVC souple	:	0,14
- Acier inox SGG Swisspacer V	:	17
- Styrène Acrilo Nitrile	:	0,17
- tamis moléculaire	:	0,10
- polysulfure	:	0,40

*: valeur transmise par l'industriel

II.3.3 Conditions aux limites

<u>Intérieur</u> <u>Extérieur</u>

 $R_{si} = 0.13 \text{ m}^2.\text{K/W}$ valeur normale, $R_{si} = 0.20 \text{ m}^2.\text{K/W}$ valeur augmentée,

 $T_i = 20$ °C. $T_e = 0$ °C.

II.3.4 Résistance thermique additionnelle

Dans les tableaux de résultats de U_w et U_{jn} , la valeur de $\triangle R$ exprime la résistance thermique additionnelle en (m².K)/W apportée par l'ensemble fermeture et lame d'air ventilée. Des valeurs par défaut sont données dans les règles Th-U.

 $R_{se} = 0.04 \text{ m}^2.\text{K/W}$

II.4 Formules

Calcul du coefficient Uw

Le calcul du coefficient Uw d'une fenêtre est réalisé selon la formule :

$$U_{w} = \frac{U_{s}A_{s} + U_{f}A_{f} + l_{s}\psi_{s}}{A_{s} + A_{f}}$$

avec:

- U_q : coefficient surfacique de transmission thermique de la partie vitrée en W/(m².K),
- U_f : coefficient surfacique moyen de la menuiserie (ouvrant+dormant) en $W/(m^2.K)$ calculé selon la formule suivante :

$$U_{f} = \frac{\sum U_{f_{i}} A_{f_{i}}}{A_{f}}$$

- $^-\text{U}_\text{fi}$: coefficient surfacique du montant ou de la traverse numéro i W/(m².K) . Ces coefficients sont calculés par une méthode numérique aux éléments finis. Les coupes des différents profilés correspondants sont données en annexes.
- A_{fi} : surface du montant ou de la traverse numéro i. La largeur des montants latéraux est supposée prolongée sur toute la hauteur de la fenêtre.
- ψ_g : coefficient de transmission thermique linéique en W/(m.K) dû à l'effet thermique entre le vitrage et la menuiserie,
- A_a: la plus petite surface de vitrage vue des deux côtés intérieur et extérieur de la paroi,
- Af: la plus grande surface de la menuiserie vue des deux côtés intérieur et extérieur de la paroi,
- l_a : le plus grand périmètre du vitrage vu des deux côtés intérieur et extérieur de la paroi.

Calcul du coefficient Sw

Le facteur solaire de la fenêtre (avec ou sans protection solaire) est calculé selon la formule suivante :

$$S_{w} = \frac{S_{s}A_{s} + S_{f}A_{f}}{A_{s} + A_{f}} \times F$$

avec:

- Sw : facteur solaire de la fenêtre

- Sg: facteur solaire du vitrage (avec ou sans protection solaire) déterminé selon les règles
- Sf : facteur solaire moyen de la menuiserie

$$S_{f} = \frac{\alpha U_{f}}{h_{f}}$$

- α : coefficient d'absorption de la menuiserie selon la couleur (voir tableau 3)
- h_e : coefficient d'échange superficiel, h_e = 25 W/(m².K)
- U_f: coefficient surfacique moyen de la menuiserie en W/(m².K)
 - oNB: pour obtenir le facteur solaire dans les conditions d'été,

$$h_{\text{e \'et\'e}}$$
 = 13,5 W/(m².K) et $\frac{1}{U_{\text{filler}}} = \frac{1}{U_{\text{filler}}} + 0,029$

$$S_{\scriptscriptstyle fith} = rac{lpha U_{\scriptscriptstyle fith}}{h_{\scriptscriptstyle ehth}} = rac{lpha}{(rac{1}{U f} + 0.029).h_{\scriptscriptstyle ehth}}$$

- A_g : la surface (en m^2) de vitrage la plus petite vue des deux côtés intérieur et extérieur A_f : la surface (en m^2) de la menuiserie la plus grande vue des deux côtés intérieur et extérieur
- F: le facteur multiplicatif:
 - Pour une fenêtre au nu intérieur F = 0,9
 - o Pour une fenêtre au nu extérieur F = 1
- σ : le rapport de la surface de vitrage à la surface de la fenêtre

$$\sigma = \frac{A_{g}}{A_{g} + A_{f}}$$

Coefficient d'absorption selon la couleur de la menuiserie :

	Couleur	Valeur forfaitaire de $lpha$ *
Claire	Blanc, jaune, orange, rouge clair	0,4
Moyenne	Rouge sombre, vert clair, bleu clair	0,6
Sombre	Brun, vert sombre, bleu vif	0,8
Noire	Noir, brun sombre, bleu sombre	1,0

Tableau 3 : coefficient d'absorption selon la couleur de la menuiserie

ou valeur mesurée avec un minimum de 0,4.

II.5 Valeurs calculées du coefficient ψ_{g} d'intercalaire

Des valeurs calculées du coefficient de transmission thermique linéique $\psi_{\rm g}$ dû à l'effet thermique entre le vitrage et le profilé, sont données dans le tableau suivant (règles Th-U) :

U _q W/(m ² .K)	Profilés	0,7	0,8	1,0	1,1
Ψ_{g} W/(m.K)	Lateral	0,090	0,086	0,083	0,081
aluminium	extérieur				
	Central	0,094	0,090	0,083	0,081
	fenêtre				
	Central	0,105	0,101	0,090	0,088
	porte-				
	fenêtre				
	Lateral	0,102	0,099	0,098	0,096
	intérieur				
	Bas	0,101	0,098	0,091	0,089
	intérieur				
	Bas	0,115	0,112	0,099	0,097
	extérieur				
	Haut	0,108	0,104	0,104	0,102
	intérieur				
	Haut	0,111	0,108	0,096	0,094
	extérieur				
$\Psi_{g}\;W/(m.K)$	Lateral	0,037	0,033	0,029	0,028
SGG Sisspacer	extérieur				
V	Central	0,051	0,048	0,041	0,039
	fenêtre				
	Central	0,054	0,051	0,047	0,043
	porte-				
	fenêtre				
	Lateral	0,034	0,032	0,029	0,028
	intérieur				
	Bas	0,036	0,034	0,029	0,028
	intérieur				
	Bas	0,040	0,038	0,030	0,029
	extérieur				
	Haut	0,036	0,034	0,031	0,030
	intérieur				
	Haut	0,036	0,034	0,029	0,028
	extérieur				

Tableau 4 : valeurs calculées du coefficient ψ g

III RESULTATS

III.1 Coefficients U_f de transmission thermique des éléments de menuiserie

Fenêtre et porte-fenêtre coulissant aluminium 73000 GINKGO SMS

Dormant	Ouvrant	Profilé	Largeur de	Ufi élé W/n	
			L'élément (m)	Triple vitrage	Double vitrage
73205	73302	Latéral extérieur	0,1085	3,0	3,0
	73304+73304	Central fenêtre	0,031	3,7	3,9
	73304+73305	Central porte- fenêtre	0,031	3,9	4,0
73205	73302	Latéral intérieur	0,1085	3,0	3,0
73204	73303	Bas intérieur	0,1085	3,8	3,8
73204	73303	Bas extérieur	0,1085	4,0	4,0
73205	73303	Haut intérieur	0,1085	3,7	3,7
73205	73303	Haut extérieur	0,1085	3,9	3,9

Tableau 5 : Ufi des éléments de menuiserie

III.2 Coefficients de transmission thermique U_{w_i} U_{jn} et facteur solaire S_w

Fenêtre et porte-fenêtre aluminium coulissant 73000 GINKGO SMS, équipée d'un double vitrage ayant un Ug de $1,1~\rm W/m^2.K$

Type de menuiserie	Uf W/m².K	Coefficient de la fenêtre nue Uw W/m².K Intercalaire du vitrage isolant		
		Aluminium	SGG Swisspacer V	
Fenêtre 2 vantaux 1,53x1,48 m (LxH)	3,4	2,1	1,9	
Porte- fenêtre 2 vantaux 2,35x2,18 m (LxH)	3,5	1,8	1,6	

Fenêtre et porte-fenêtre aluminium coulissant 73000 GINKGO SMS, équipée d'un double vitrage ayant un Ug de 1,0* W/m 2 .K

Type de menuiserie	Uf W/m².K	Coefficient de la fenêtre nue Uw W/m².K Intercalaire du vitrage isolant		
		Aluminium	SGG Swisspacer V	
Fenêtre 2 vantaux 1,53x1,48 m (LxH)	3,4	2,0	1,8	
Porte- fenêtre 2 vantaux 2,35x2,18 m (LxH)	3,5	1,7	1,6	

^{*:} valeur horts cadre Th-U, sauf évolution de la technologie

Fenêtre et porte-fenêtre aluminium coulissant 73000 GINKGO SMS, équipée d'un triple vitrage ayant un Ug de $0.8~\rm W/m^2.K$

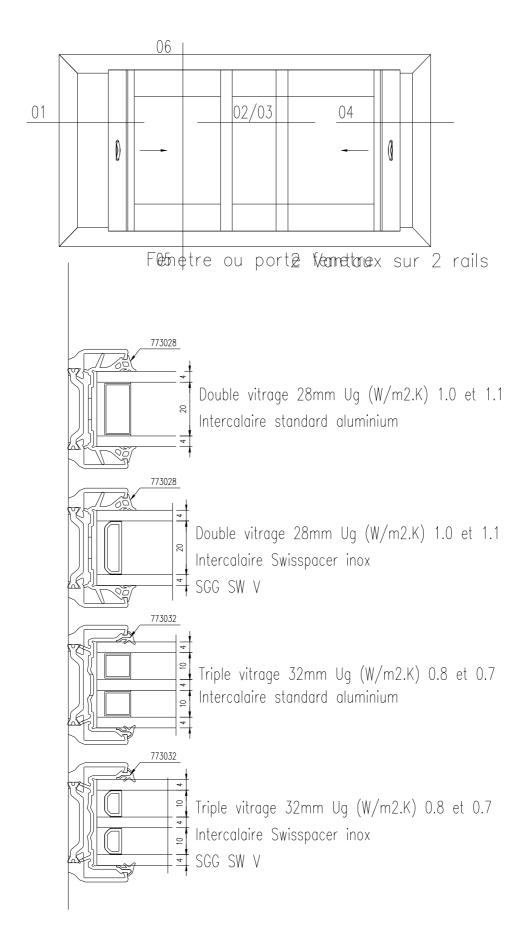
Type de menuiserie	Uf W/m².K	Coefficient de la fenêtre nue Uw W/m².K Intercalaire du vitrage isolant		
		Aluminium	SGG Swisspacer V	
Fenêtre 2 vantaux 1,53x1,48 m (LxH)	3,4	1,9	1,7	
Porte- fenêtre 2 vantaux 2,35x2,18 m (LxH)	3,4	1,5	1,4	

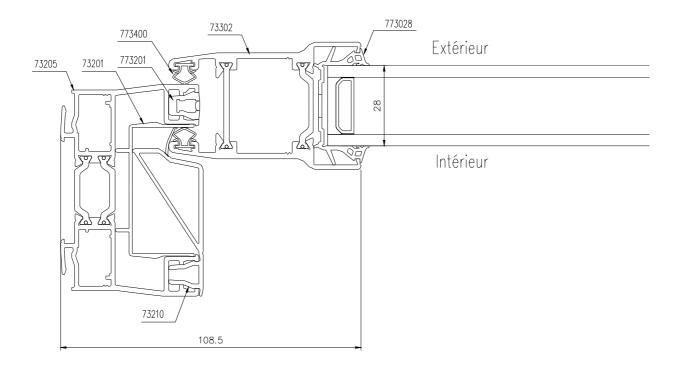
Fenêtre et porte-fenêtre aluminium coulissant 73000 GINKGO SMS, équipée d'un triple vitrage ayant un Ug de $0.7~\rm W/m^2.K$

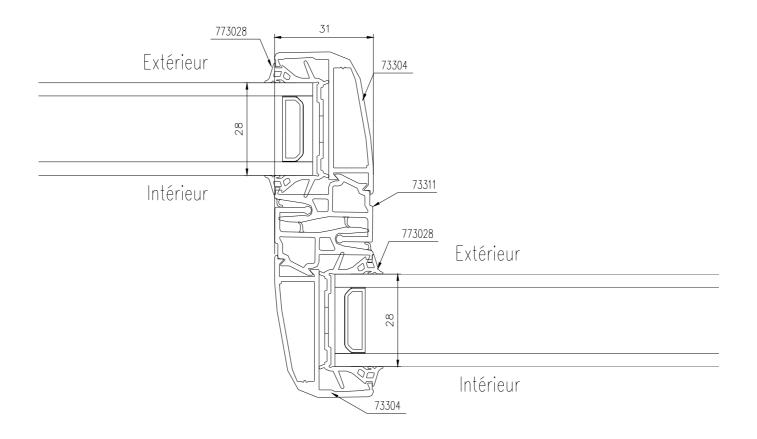
Type de menuiserie	Uf W/m².K	Coefficient de la fenêtre nue Uw W/m².K Intercalaire du vitrage isolant		
		Aluminium	SGG Swisspacer V	
Fenêtre 2 vantaux 1,53x1,48 m (LxH)	3,4	1,8	1,6	
Porte- fenêtre 2 vantaux 2,35x2,18 m (LxH)	3,4	1,5	1,3	

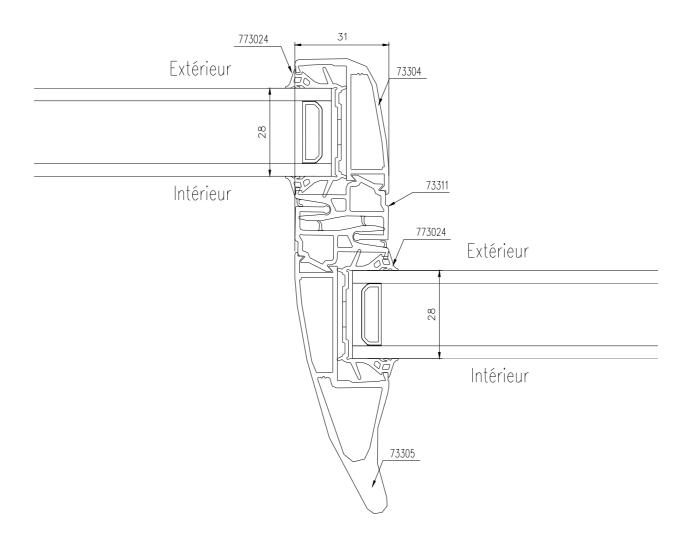
Tableau 6 : coefficients thermiques

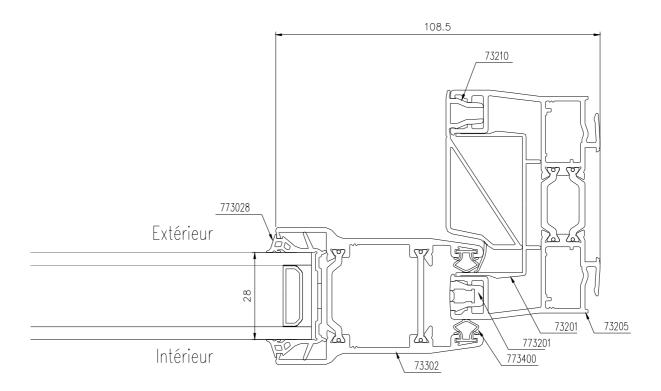
Sg facteur solaire du vitrage avec protection solaire éventuelle	Sw			
Fenêtre 2	2 vantaux : 1,48n	nx1,53m (HxL) (hors-	tout)	
Ag en m²	·	1,6192	•	
Af en m²		0,6452		
σ		0,72		
Uf menuiserie en W/m ² .K		3,4		
Valeur forfaitaire de α	0,4	0,6	0,8	1,0
(menuiserie)				
0,1	0,08	0,09	0,09	0,10
0,2	0,14	0,15	0,16	0,16
0,3	0,21	0,21	0,22	0,23
0,4	0,27	0,28	0,29	0,29
0,5	0,34	0,34	0,35	0,36
0,6	0,40	0,41	0,41	0,42
0,7	0,46	0,47	0,48	0,49
Porte-fenêt	re 2 vantaux : 2,1	18mx2,35m (HxL) (ho	rs-tout)	
Ag en m²		4,1262		
Af en m²		0,9968		
σ		0,81		
Uf menuiserie en W/m².K		3,5		
Valeur forfaitaire de $lpha$	0,4	0,6	0,8	1,0
(menuiserie)				
0,1	0,08	0,09	0,09	0,10
0,2	0,15	0,16	0,16	0,17
0,3	0,23	0,23	0,24	0,24
0,4	0,30	0,30	0,31	0,31
0,5	0,37	0,38	0,38	0,39
0,6	0,44	0,45	0,45	0,46
0,7	0,52 0,53 0,53			
Ces valeurs sont à diviser par 0,9 pour une pose au nuextérieur				

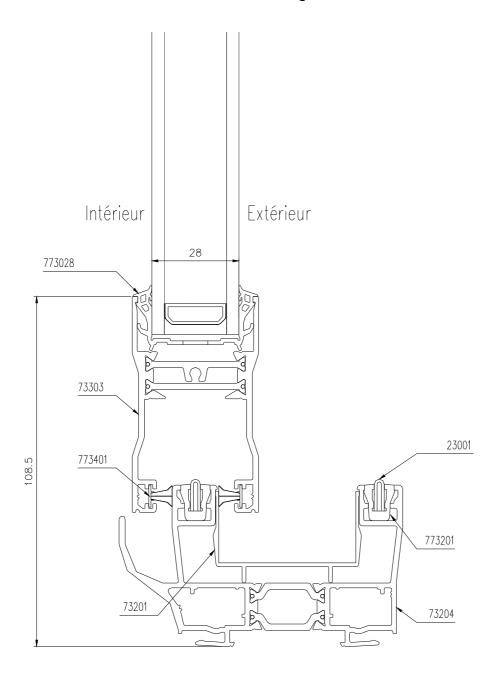

Tableau 7 : facteur solaire

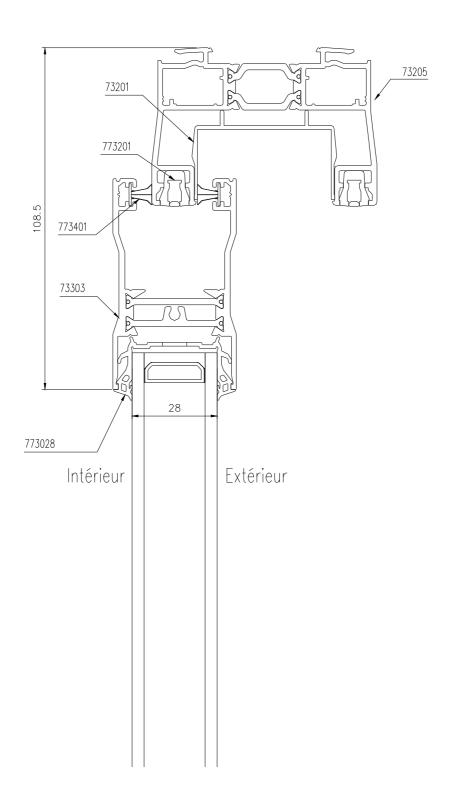

ANNEXES


Plan 1









FIN DE RAPPORT